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Abstract. The ability to monitor nutrient and other environmental conditions 
with high sensitivity is crucial for cell growth and survival. Sensory adaptation 
allows a cell to recover its sensitivity after a transient response to a shift in 
the strength of extracellular stimulus. The working principles of adaptation 
have been established previously based on rate equations which do not consider 
fluctuations in a thermal environment. Recently, Lan et al (2012 Nat. Phys.  
8 422–8) performed a detailed analysis of a stochastic model for the Escherichia 
coli sensory network. They showed that accurate adaptation is possible only 
when the system operates in a nonequilibrium steady-state (NESS). They 
further proposed an energy-speed-accuracy (ESA) trade-off relation. We present 
here analytic results on the NESS of the model through a mapping to a one-
dimensional birth-death process. An exact expression for the entropy production 
rate is also derived. Based on these results, we are able to discuss the ESA 
relation in a more general setting. Our study suggests that the adaptation error 
can be reduced exponentially as the methylation range increases. Finally, we 
show that a nonequilibrium phase transition exists in the infinite methylation 
range limit, despite the fact that the model contains only two discrete variables.

Keywords: exact results, regulatory networks (theory), signal transduction 
(theory), stationary states
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1. Introduction

As a paradigmatic example of environmental monitoring in biology, the Escherichia 
coli chemotactic sensory system has been studied extensively over the years [1]. Its 
core component is the transmembrane methyl-accepting chemotaxis protein (MCP) 
receptor. MCP binds selectively to ligands outside the cytoplasmic membrane and 
modulates the activity of its downstream signal transduction pathway in a way that 
depends on its methylation state. Two aspects are recognized to be crucial to the per-
formance of the sensory network in the biological context: sensitivity of detection in 
a noisy environment, and adaptation to maintain that sensitivity over a broad range 
of ligand concentrations. With regard to high sensitivity to diffusing chemicals in the 
surrounding medium, Berg and Purcell [2] presented an optimal strategy in 1977 based 
on simple physical considerations. They showed that the measured chemotactic sensi-
tivity of E. coli approaches that of the optimal design. Further indication of the organ-
ism’s optimal performance is found in its nearly perfect adaptation over five decades 
in ligand concentration. The latter property is shown to hold even when proteins on 
the sensory network are expressed away from their natural levels [3]. To explain this 
remarkable behavior, Barkai and Leibler (BL) [4] introduced a simple model where the 
MCP methylation/demethylation rates are linked to the downstream activity. The sys-
tem reaches a steady state only when its activity is at the level required by the balance 
of methylation and demethylation currents. It was soon pointed out by Yi et al [5] that 
the BL scheme is in effect implementing an integral feedback control which is widely 
used in engineering systems to achieve robust adaptation. Furthermore, an exhaustive 

Contents

1. Introduction 2

2. A model for sensory adaptation 3

3. Adaptation and the NESS 5

3.1. Condition for adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2. The NESS distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3. Adaptation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4. Energy dissipation and the ESA trade-off 9

5. Phase transition 11

6. Conclusions 12

Acknowledgment 13

Appendix A. Approximate expression of the NESS distribution 13

References 14

http://dx.doi.org/10.1088/1742-5468/2015/07/P07025


energy dissipation in an adaptive molecular circuit

3doi:10.1088/1742-5468/2015/07/P07025

J. S
tat. M

ech. (2015) P
07025

search by Ma et al [6] to identify all possible 3-node adaptive networks found integral 
feedback control as one of only two core motifs that enable perfect adaptation.

In a separate development, there have been much progress in recent years in under-
standing fluctuation phenomena in non-equilibrium systems whose dynamics do not 
satisfy detailed balance [7–12]. One particular aspect of fluctuations in a nonequilib-
rium steady state (NESS) is the production of system’s entropy and its subsequent 
release as heat to the environment [13]. In this respect, the generic behavior of non-
equilibrium systems studied in the statistical physics community is shared by molecular 
processes in a living cell. A well-known example is the kinetic proof-reading discussed 
by Hopfield in 1974 [14]. Here, the molecular machinery to carry out DNA replication 
can achieve a much lower error rate by operating out of equilibrium. It may be argued 
that employing energy flux to enable or improve functionality of a molecular circuit is 
a recurring theme in biology. Indeed, as more detailed knowledge about these circuits 
emerges, quantitative models have been introduced to elucidate their working prin-
ciples from the energy perspective [15–25].

The integral feedback control for adaptation requires asymmetric interactions 
between the output node and the integration node, which can only be realized by 
systems in a NESS. The issue of energy cost to maintain such a state was addressed 
in a recent study by Lan et al [19]. One of their main findings is a relation among the 
energy dissipation rate, adaptation speed and adaptation accuracy (ESA), which they 
suggested to hold generally. Their result is based on a sensory network model which 
has been shown to reproduce most of the experimental data on the MCP receptor in 
E. coli [1].

Despite its intuitive appeal, the ESA relation has not been derived from the more 
general results in the literature regarding the NESS. Should there be a fundamental 
connection between the adaptation accuracy and energy dissipation rate? Specifically, 
is there a lower bound for energy dissipation rate to achieve a given adaptation accu-
racy? To clarify this and other issues, it is necessary to perform a more comprehensive 
study of the sensory network model. Due to the conceptual importance of the sensory 
network model, a rigorous discussion is desirable.

The paper is organized as follows. The biological background of adaptation and the 
model by Lan et al are introduced in section 2, followed by a detailed analysis of the 
NESS of the system in section 3. In section 4 we derive an exact expression for the 
energy dissipation rate and compare it with the ESA tradeoff relation. A nonequilib-
rium phase transition of the system in the infinite methylation range limit is identified 
in section 5 and its properties discussed. Section 6 contains a summary of our results 
and conclusions. Mathematical details of an approximate treatment of the NESS dis-
tribution is relegated to appendix A.

2. A model for sensory adaptation

Here, we briefly introduce the transmembrane methyl-accepting chemotaxis protein 
(MCP) receptor, which is the core component for receiving signal and exercising adapta-
tion [1]. MCPs regulate the clockwise-counterclockwise rotational switch of downstream 
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flagellar motors which drive the run-and-tumble motion of an E. coli cell. A simple 
cartoon of this receptor is illustrated in figure 1(a). The activity of the receptor can 
be described by a binary variable a: a   =   1 for the active state and a   =   0 for the inac-
tive state. The transition rate between the two states depends on the external ligand 
concentration (i.e. signal strength) s and the internal methylation level m. m ranges 
from 0 to m0, with m0   =   4 for a single MCP. The methylation level can be increased by 
enzyme CheR and decreased by enzyme CheB, in a way that depends on the activity 
of MCP. Figure 1(b) illustrates response of the MCP receptor to a stepwise signal s 
obtained from experimental measurements. The mean activity ⟨ ⟩a t( )  changes sharply in 
a short time window τa less than a second, and recovers slowly over a much longer time 
scale τm, of the order of a minute, due to the slow change of average internal methyla-
tion level ⟨ ⟩m t( ) . The output recovery after a transient response to external stimuli is 
called adaptation. The performance of adaptation is characterized by the adaptation 
error which can be defined as the ratio between the final shift of activity and the rela-
tive change of the signal strength, as illustrated in figure 1(b).

A Markov network model with internal states specified by (a,m) was proposed for 
a single MCP by Lan et al [19], as shown in figure 2. Transition between active and 
inactive states at a given methylation level takes place on the time scale τa, with rates 
given by

Figure 1. (a) The MCP receptor. (b) Mean response of the MCP receptor to a 
stepwise signal.

(a) (b)

Figure 2. The Markov network model of a single receptor MCP in E. coli. Red 
arrows indicate existence of a futile cycle at small α, which is essential for adaptation.

http://dx.doi.org/10.1088/1742-5468/2015/07/P07025
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where β = k T1/( )B  is the inverse temperature, and

∆ = − +E m s e m m f s( , ) ( ) ( )0 1

is the free energy gap between states (0,m) and (1,m). Here e0  >  0 is the methylation energy 
and m1 an offset methylation level [1, 26]. The term = + +f s k T s K s K( ) ln[(1 / )/(1 / )]i aB  
gives the difference in ligand chemical potential in the active and inactive states with 
respective equilibrium constants Ka and �K K( )i a . Transition between different meth-
ylation levels takes place on the time scale τm, with rates indicated in figure 2: when the 
receptor is inactive, the rate of methylation (assisted by enzyme CheR) is KCR while the 
rate of demethylation is αKCR; when the receptor is active, the rate of demethylation 
(assisted by CheB) is KCB while the rate of methylation is αKCB. An estimate of the 

typical methylation/demethylation cycle time is given by τ = +− −k km CB
1

CR
1.

In the case of E. coli chemoreceptor, the methylation/demethylation cycle is pow-
ered by hydrolysis of S-Adenosyl methionine (SAM) which donates a methyl group to 
an inactive receptor. Its effect on the methylation/demethylation rates is represented 
by the parameter α in the Markov model, whose biophysical origin is discussed in [19, 

22]. When α α β= ≡ eexp( /2)EQ 0 , global detailed balance condition is satisfied, in which 
case the Boltzmann distribution governed by a free energy function is recovered. For 
α α< EQ, the system is driven out of equilibrium with generally different properties 
which we study using both analytical and numerical methods. Therefore α describes the 
strength of driving to keep the receptor to operate under out of equilibrium conditions.

In the numerical examples presented below, we adopt the parameter values as sug-
gested in [19]: m1   =   1, Ki   =   18.2 µM, Ka   =   3000 µM, β = 1 (k TB  as the unit of energy) 
and e0   =   2. The time constants are chosen as τ = 0.1a  s, and = =k k 0.01CB CR  s−1. For 
this parameter set, α = eEQ . To simplify the notation, we write ω ωm s m s( , ), ( , )1 0  as 
ω m( )1  and ω m( )0  respectively.

3. Adaptation and the NESS

3.1. Condition for adaptation

We first revisit the condition for adaptation first obtained by Lan et al [19]. For the 
model introduced in section 2, the master equation for the joint probability P(a,m) 
takes the form,

α ω

α ω

= − + + +

− + +

P m

t
k P m k P m m P m

k k m P m

d (0, )

d
(0, 1) (0, 1) ( ) (1, )

[ ( )] (0, ),

CR CR 1

CR CR 0

 
(1a)

α ω

α ω

= − + + +

− + +

P m

t
k P m k P m m P m

k k m P m

d (1, )

d
(1, 1) (1, 1) ( ) (0, )

[ ( )] (1, ).

CB CB 0

CB CB 1

 
(1b)

http://dx.doi.org/10.1088/1742-5468/2015/07/P07025


energy dissipation in an adaptive molecular circuit

6doi:10.1088/1742-5468/2015/07/P07025

J. S
tat. M

ech. (2015) P
07025

From the above, we obtain the evolution equations for the moments ⟨ ⟩ =∑m mP a m( , )a m,  

and ⟨ ⟩ =∑a P m(1, )m :

⟨ ⟩
∑ ω ω= −

a

t
m P m m P m

d

d
[ ( ) (0, ) ( ) (1, )],

m

0 1 (2a)

⟨ ⟩ ⟨ ⟩α= − +




− +

+





+

m

t
k k a

k

k k
B

d

d
(1 )( ) .CR CB

CR

CR CB
1 (2b)

Here α α= + − −B k P k P k P m k P m(0, 0) (1, 0) (0, ) (1, )1 CR CB CR 0 CB 0  depends on the 
probabilities for the extreme methylation states m   =   0 and m   =   m0.

In a steady environment of constant ligand concentration s, the system is expected 
to reach a steady state in a time τm where both ⟨ ⟩m  and ⟨ ⟩a  assume constant values. 
Setting the right-hand-side of equation (2b) to zero yields,

⟨ ⟩
α

= =
+

+
− +

a a
k

k k

B

k k

1

1
.s

CR

CR CB

1

CR CB
 (3)

Since the methylation and demethylation rates kCR and kCB are assumed to be con-
stants in the model, the first term ≡ +a k k k/( )0 CR CR CB  on the right-hand-side of equa-
tion (3) is independent of s. Figure 3 shows as against s for three different values of α, 
obtained from numerically exact solution of the model in the NESS. The steady-state 
activity as is centered around a0 (dashed line) over a large range of s for α< 1, but not 
so for ⩾α 1. The ‘adaptation error’

∣ ∣ε
α

≡ − =
− +

a a
B

k k

1

1
s 0

1

CR CB
 (4)

is essentially controlled by the size of the boundary term B1. For α< 1, B1 is small over 
a broad range of s. As we shall see in the next section, the NESS distribution in this 
case is indeed centered in the middle of the allowed methylation range. This is however 
not the case when α> 1.

Figure 3. Mean receptor activity against ligand concentration for three different 
values of the nonequilibrium parameter α. The dash line indicates the value a0. 
Here the methylation range m0   =   4.
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The transient response to a signal ramp also exhibits qualitatively different behav-
ior for α< 1 and α> 1. Figure 4 shows our results obtained by numerically integrating 
the master equations (1a) and (1b) at three different values of α, upon a jump in ligand 
concentration from 10Ki to 15Ki at t   =   0. The initial response of ⟨ ⟩a  to the signal ramp 
is qualitatively similar in the three cases, i.e. a fast depression of receptor activity to a 
near plateau value in a time of order τa. However, opposite behavior is seen at longer 
times, in concert with the change in methylation level as seen in figure 4(b). For α> 1, 
a further decrease of the mean activity is seen when the methylation level starts to 
decrease in response to the change in ⟨ ⟩a . On the other hand, when α< 1, the methyla-
tion level increases in accordance with equation (2b), eventually restoring the mean 
activity to a value close to the pre-stimulus level. The latter is precisely the scenario for 
adaptation that employs a change in the methylation level to offset the activity change 
effected by the shift in signal strength.

In summary, both the steady-state activity and the transient response to a signal 
ramp show qualitatively different behavior below and above α = 1. We thus conclude 
that the condition for adaptation in this model is α< 1.

3.2. The NESS distribution

In the previous subsection, we obtained the condition for adaptation by considering the 
moment equations with the help of numerical integration of the master equation. To 
gain a complete understanding of the NESS, it is necessary to calculate the distribution 
function P(a,m). Fortunately, for the model in question, this can be done under the 
‘fast equilibrium’ approximation facilitated by the separation of the time scales τa and 
�τ τm a. Then, P(1,m) and P(0,m) satisfy the local detailed balance

⩽ ⩽
ω
ω

τ τ= +
P m

P m

m

m
O m m

(1, )

(0, )

( )

( )
( / ), (0 ).a m

0

1
0 (5)

Figure 4. An initial steady state at s   =   10Ki is perturbed by shifting the ligand 
concentration to s   =   15Ki at t   =   0. Results at three different values of α are 
shown: (a) change in the mean receptor activity ⟨ ⟩a t( )  against t; (b) change in the 
methylation level ⟨ ⟩m t( )  against t. The methylation range m0 is set to be four.
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Let ≡ +P m P m P m( ) (0, ) (1, ), we obtain,

β
β
β

=
+ − ∆

=
− ∆

+ − ∆
P m

E m s
P m P m

E m s

E m s
P m(0, )

1

1 exp[ ( , )]
( ), (1, )

exp[ ( , )]

1 exp[ ( , )]
( ).

 

(6)

With the help of (5), equations (1a) and (1b) combine to yield

= − − + + + − +
P m

t
b m P m d m P m b m d m P m

d ( )

d
( 1) ( 1) ( 1) ( 1) [ ( ) ( )] ( ).
 

(7)

Equation (7) defines a one-dimensional birth-death process with the birth and death 
rates given respectively by,

α β
β

α β
β

=
+ − ∆
+ − ∆

=
+ − ∆
+ − ∆

b m
k k E s m

E s m
d m

k k E s m

E s m
( )

exp[ ( , )]

1 exp[ ( , )]
, ( )

exp[ ( , )]

1 exp[ ( , )]
.

CR CB CR CB

Its steady-state distribution takes the form,

∏+ =
+

=
+=

P m
b m

d m
P m P

b i

d i
( 1)

( )

( 1)
( ) (0)

( )

( 1)
.

i

m

0
 (8)

Together with equation (6) the full NESS distribution is obtained.
Consider the range of ligand concentrations where the receptor is functional, i.e. 

�−∆E m sexp[ ( , )] 1 at m   =   0 (inactive state favored) and �−∆E m sexp[ ( , )] 1 at 
m   =   m0 (active state favored). Consequently, the ratio +b m d m( )/ ( 1) changes mono-
tonically between the limiting values α1/  and α as m increases from 0 to m0. Let m* 

be the value of m where �+b m d m( *)/ ( * 1) 1. According to equation (8), this is the 
methylation level where P(m) varies slowest with m, i.e. the stationary point of the 
distribution. For α< 1, + >b m d m( )/ ( 1) 1 on the low methylation side (m  <  m*) while 

+ <b m d m( )/ ( 1) 1 on the high methylation side (m  >  m*). Therefore P(m) reaches its 
peak value at m*. The opposite situation happens for α> 1, where P(m) initially decreases 
with m on the low methylation side, reaches its minimum value at m*, and increases 
on the high methylation side. At α = 1, =b m d m( ) ( ) so that =P m P b d m( ) (0) (0)/ ( ) 
becomes essentially flat especially when =k kCR CB. The general behavior of the NESS 
distributions in the two regimes are illustrated in figure 5. A more complete discussion 
of the functional form of these distributions and their dependence on s at different α 
values can be found in the appendix A.

In the case α< 1, the signal level affects the shape of the distribution by shifting its 

peak position β= + − −m m f s e e k k* ( )/ ( ) ln( / )1 0 0
1

CB CR  (see appendix A) which coincides 
with the mean methylation level. This is a general feature for adaptation achieved 
through integral feedback control, i.e. the effect of external signal change is absorbed 
by a shift in the average methylation level.

3.3. Adaptation error

According to equation (3), the mean receptor activity ⟨ ⟩a  in the NESS depends on 
the signal level s only through the probabilities for the extreme methylation states at 
m   =   0 and m   =   m0. For α< 1, P(m) decreases rapidly away from the peak position 
at m*. Except very close to α = 1 which requires a separate treatment, the adaptation 
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error as defined by equation (4) can be estimated by the largest term in the expression 

for B1. Let ≡ { − }m m m mmin *, *d 0  be the distance between m* and the closest extreme 
methylation state. With the help of equation (A.3), we obtain,

�ε

α
α
β α

α β
α

α
α
α β

α











−
−
+

<
+
−

+
+
−

e
m m

e

m
e

ln

1

1 2
,

1

1

1
ln ;

ln
1

1

1

2
ln , otherwise.

d d

d

0 2

0

0

2

 (9)

Equation (9) shows that the adaptation error can be decreased by either increasing 
the methylation range m0 or decreasing the parameter α that brings the system fur-
ther away from equilibrium. At a given α< 1, increasing m0 allows a greater functional 
range of the receptor and consequently larger values for md, resulting in an exponential 
decrease of ε . On the other hand, at a fixed m0, decreasing α increases the rate of expo-
nential decay of ε . However, when α is below α β= − e mexp( /2)m 0 0 , the error basically 

saturates to a value bounded from below by �ε β− e mexp( /8)m 0 0
2 . These observations 

are in agreement with the trends in figure 6(a) where ε  is plotted against α for several 
different values of md.

4. Energy dissipation and the ESA trade-off

The nonequilibrium methylation/demethylation dynamics of the MCP receptor requires 
energy input [19]. Within the adaptation model considered here, the rate of energy dis-
sipation can be calculated using the standard formula [27–29]

∣
∣
∣∑β

ω
ω

= ′
′

′′

W J X X
X X

X X
˙ 1

2
( ) ln

( )

( )
.

X X,
 (10)

Figure 5. The steady-state distributions P(1,m), P(0,m) and P(m) at m0   =   4, 
s   =   10 Ki. (a) α = 0.1; (b) α α= > 1EQ .
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Here ∣ω ′X X( ) is the transition rate from state ′X  to state X, 
∣ ∣ ∣ω ω= −′ ′ ′ ′J X X X X P X X X P X( ) ( ) ( ) ( ) ( ) is the net flux from ′X  to X, and P(X) is the 

probability for state X. For our purpose, it is convenient to rewrite the above equa-
tion in terms contributions from directed ‘elementary cycles’ [30]. An elementary cycle 
is a loop formed by nodes and edges of the network that cannot be further decomposed 
into smaller loops. Denoting by Cl the lth elementary cycle on the network, equa-
tion (10) can be rewritten as

A∑β=W J C C˙ 1
( ) ( ),

l

l l (11)

where J(Cl) is the probability flux associated with cycle Cl, and 

∣ ∣A ω ω=∑ ′ ′∈C X X X X( ) ln[ ( )/ ( )]l e Cl
, summed along the cycle.

For the network model shown in figure 2, we define the mth elementary cycle to 
be the rectangle between methylation levels m and m   +   1, directed counter-clockwise 
as indicated by the red arrows. It is simple to verify that the thermodynamic force 

A α α=C( ) 2 ln[ / ]l EQ  is the same for all cycles. (A physical interpretation of this thermo-
dynamic force can be found in [22].) The cycle flux α= + −J m k P m k P m( ) (1, 1) (1, )CB CB  
can also be read off easily from figure 2. Hence,

∑ α

α α

= + −

= − − +
=

−

J k P m k P m

k a P P m

[ (1, 1) (1, )]

[(1 ) (1, 0) (1, )].

m

m

s

tot

0

1

CB CB

CB 0

0

With the help of equation (3), we obtain finally the following exact expression for 
the energy dissipation in the NESS,

βτ
α

α
α

= − +W B˙ 2
(1 ) ln ,

m
2

EQ
 (12)

where α α= − + −B P P P m P m(0, 0) (1, 0) (1, ) (0, )2 0 0  is a boundary term.

Figure 6. (a) Adaptation error and (b) energy dissipation over the methylation 
time scale τm against αln . Here the ligand concentration is chosen such that 

= = −m m m* /2 1d 0  with =m 4, 80  and 12.
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Figure 6(b) shows Ẇ  against α for selected values of md. In all cases presented, a 
logarithmic increase on the far-from-equilibrium side (i.e. �α 1) is seen, in agreement 
with equation (12). Dependence of Ẇ  on md, which enters only through the boundary 
term B2, is essentially negligible. This behavior can be understood from the fact that 
most of the dissipation takes place in the loop centered around the peak position m* of 
the NESS distribution P(m).

In [19], based on approximate solutions of the adaptation model at m0   =   4, Lan  
et al proposed the ESA tradeoff relation,

� ε εσ ωW c˙ ( ) ln( / )a m0
2

0 (13)

to capture the increase in energy dissipation to achieve higher accuracy of adapta-

tion as α is reduced. Here σc a0
2 sets the appropriate energy scale for the problem, and 

ω τ= −
m m

1. Comparing with our results equations (9) and (12), we see that equation (13) 

needs to be modified to take into account the dependence of ε  on the distance md from 
the actual mean methylation level to the boundaries of the full methylation range, i.e. 
m   =   0 and m   =   m0. In addition, as we see from figure 6 , the adaptation error saturates 
to a value of the order of εm set by m0 when α falls below αm, while the energy dissipa-
tion rate Ẇ  keeps increasing. From the calculations presented above, we see that ε  is 
controlled by the probabilities for the rare events where the extreme methylation states 
are visited, while Ẇ  is not sensitive to the actual methylation level itself.

5. Phase transition

As we have seen in section 3, there is a qualitative change in the shape of the NESS dis-
tribution P(m) at α = 1. For α> 1, P(m) is bimodal with peaks at the two ends of the 
methylation range from 0 to m0. The relative weight of the peaks is controlled by the 
signal strength s. On the other hand, for α< P m1, ( ) has a single peak in the middle of 
the methylation range. As the signal strength s varies, the peak position shifts accord-
ingly but its shape remains more or less the same until either end of the methylation 
range is reached. As discussed previously by Lan et al [19], the latter feature is crucial 
for the implementation of precise adaptation. In this section we examine the transition 
between the two regimes in further detail with the help of the exact solution for the 
NESS.

Let us first examine the behavior of the energy dissipation rate in the NESS given 

by equation (12) in the limit = { − }→∞m m m mmin *, *d 0 . For α< 1, equation (A.3) 
shows that the boundary probabilities vanish in this limit, and hence B2   =   0. On the 
other hand, for α> 1, this limit implies the activation energies ∆ →+∞E s(0, )  and 
∆ →−∞E m s( , )0 . Therefore the receptor is nearly exclusively in the inactive state 
when the methylation level is close to zero, and exclusively in the active state when the 
methylation level is close to full. Then, the elementary loop current J(m)   =   0 for all m 
which in turn yields vanishing dissipation. Here we encounter an interesting example 
where the detailed balance is violated by the kinetic rates but no dissipation actually 
takes place due to vanishing loop currents. Summarizing, we have in the limit →∞md ,
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⩽ ⩽

βτ
α α α α

α α
=










− < <
∞Ẇ

2
(1 ) ln( / ), 0 1;

0, 1 .

m
EQ

EQ

 (14)

The singular behavior of Ẇ  against α indicates a true nonequilibrium transition in 
the model where the methylation range is infinite.

According to equation (9), the adaptation error ε  can be made arbitrarily small in 
the entire adaptive phase α α< = 1c  by increasing md. On the other hand, Ẇ  can be 
made arbitrarily small at the same time by choosing an α close to αc. The energy dis-
sipation is necessary to generate adaptive behavior, however, there does not appear to 
be a minimal value for the dissipation rate to support an arbitrarily accurate adaptive 
system.

For a system with a finite methylation range, transition between the two phases is 
more gradual than what is described above. From equations (A.3) and (A.4), one may 

identify a ‘correlation length’ ∣ ∣ ∣ ∣� �λ α α− −1/ ln 1 1. For λ>md , equation (14) can be 
directly applied. Corrections need to be considered when λ<md , based on exact results 
derived in previous sections.

6. Conclusions

In this paper, we report a detailed analytical study of the stochastic network model 
proposed by Lan et al shown previously to describe well sensory adaptation in E. coli. 
To understand this system, we first derive moment equations which are closely related 
to the rate equations traditionally used to model this type of biological processes. 
The moment equations implement an integral feedback control scheme at the heart 
of the adaptive behavior. Adaptation in the model is achieved when the nonequilib-
rium parameter α α< c, where α = 1c  is less than its value αEQ when detailed balance 
is observed. By mapping the original ladder network to a one-dimensional birth-death 
process under the assumption of timescale separation, we obtain analytic expressions 
for the NESS distribution with qualitatively different behavior for α> 1 (nonadaptive 
phase) and α< 1 (adaptive phase). With the help of the exact results on the NESS 
distribution, we compute the mean receptor activity from which its dependence on the 
external signal strength is obtained. In the adaptive phase, the adaptation error, which 
measures the deviation of the mean receptor activity from a suitable reference value, is 
found to decrease when the system is driven further out of equilibrium by reducing α, 
but approaches a saturated value for α α< m. Interestingly, at a given α, the adapta-
tion error decreases exponentially with the number of the available methylation states 
before the extreme methylation levels are reached.

We also derive an exact formula for the energy dissipation rate by using a cycle-
decomposition technique. The energy dissipation rate is found to be insensitive to the 
size of the methylation range and also to timescale separation. Although our results 
confirm qualitatively the statement that adaptation within the molecular construct 
that implements integral feedback control requires nonequilibrium driving, there does 
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not appear to be a lower bound on energy dissipation to achieve a given level of 
adaptation accuracy, in contrary to the ESA tradeoff relation proposed previously by 
Lan et al.

Although the methylation range of a single MCP receptor is four, we have investi-
gated the behavior of the system with arbitrary methylation range, especially when the 
methylation range m0 is large. The extension allows us to examine various theoretical 
issues quantitatively. In the limit →∞m0 , a true nonequilibrium phase transition at 
α = 1 can be identified.

The current analysis only focuses on the steady-state properties of the system. 
However, transient response at short times is also an integral part of the molecular 
adaptive circuit. Furthermore, one may investigate adaptation accuracy in a limited 
time window, which may put the ESA tradeoff relation in a biologically more meaning-
ful setting. An understanding of the adaptive behavior in a general setting based on 
thermodynamic principles is still lacking. In this respect, lessons may be drawn from 
recent developments in information thermodynamics [18, 31, 32] by viewing the adap-
tive circuit as an information processing machine.
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Appendix A. Approximate expression of the NESS distribution

In this appendix we derive an approximate analytic expression for the NESS distribu-
tion given by equation (8). Taking the logarithm of the equation, we obtain,

∑ ∑φ
+

=
+

=
+

+
= =

P m

P

b i

d i

d

d m
x iln

( 1)

(0)
ln

( )

( 1)
ln

(0)

( 1)
( ( )),

i

m

i

m

0 0
 (A.1)

where

φ
α

α
=

+
+

x
e

e
( ) ln

1 x

x

and ( ) Δ ( ) ( ) ( *)β β≡ − + = −x m E s m k k e m m, ln /CB CR 0 , with * ( ) ( ) ( )β= + − −m m f s e e k k/ ln /1 0 0
1

CB CR . It 
is straightforward to verify that φ x( ) is an odd function of x.

The function φ x( ) is well approximated by a piece-wise linear function

( )

⩽
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⩾
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α
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ξ ξ
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− −
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−x
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, ;
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 (A.2)
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Which has the same slope at x   =   0 and same asymptotic values as →±∞x . 

Continuity requires the choice ξ α= α
α
+
−

ln
1

1
. The two functions match each other well 

except near ξ=±x .
For α< 1, the peak of P(m) is centered at m*. It is thus convenient to use P(m*) as 

the reference. Approximating the sum in equation (A.1) by an integral over ψ x( ), we 
obtain,

�
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α
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α
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(A.3)

Here ξ β= ±±m m e* /( )0 . Since d m( ) has only a relatively weak dependence on m, we 
see that P(m) is essentially gaussian within the interval − +m m( , ), but turns to simple 
exponential decay outside the interval.

For α> 1, P(m) achieves its minimum value at m*. In the neighborhood of the meth-
ylation boundaries, we have

�
α

α








<

>

−
−

−
+

P m
P d d m m m

P m d m d m m m
( )

(0) (0)/ ( ), ;

( ) ( )/ ( ), .

m

m m
0 0

0
 (A.4)

Noting that φ x( ) is an odd function of x, we have approximately P(m0)  ≃ 

( ) ( ) ( )*α − P d d m0 0 /m m2
0

0 .
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